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Abstract— In this paper, we propose a novel real-time method
for tracking planar edge templates. This method tracks an edge
template by estimating its homography transformations with
respect to the sampled edge pixels detected from the incoming
frames. Particularly, we define a cost function based on a new
feature map of the to-be-tracked edge template and optimize it
by a Lucas-Kanade-like algorithm. The feature map is defined
as the fourth root of the distance transform. Our method
operates on just edges so that it is good at tracking those low
textured targets, such as hollow targets (mug rim), thin targets
(cable, ring) and non-Lambertian objects (disc). We validate
and compare our method with four other methods on five newly
collected real-world video sequences. The results achieves the
lowest overall average error (1.58 pixels) and also outperforms
others in terms of success rate. The per frame processing time
of about 30 ms proves that our method is acceptable in real-
time applications. The code and dataset are publicly available
at: http://webdocs.cs.ualberta.ca/~xuebin/.

I. INTRODUCTION

Visual tracking is a hot yet challenging issue in computer
vision and robotics communities. Many trackers have been
proposed in the past decades [1], [2]. The bounding boxes
and quadrilaterals are the most commonly used targets rep-
resentations of low Degree-of-Freedom (DoF) [1], [3] and
high DoF trackers [2] respectively. Those trackers operates
on the relatively rich texture information enclosed by the
bounding boxes and quadrilaterals. The assumption is that
these textures are rich and relatively stable. However, this
assumption fails when the targets are hollow objects, thin
objects and non-Lambertian objects (see Fig. 1). To represent
these targets, edge template is a good alternative. In this
paper, we are aiming at tracking these special targets via
edge templates homography estimation.

Chamfer Matching (CM) based methods [4], [5] are the
most commonly used in edge templates matching and de-
tection [6], [7]. However, most of them are designed for
locating the templates in two dimensional (2D) images other
than estimating their homography transformations. Although
it is possible to adapt them for detecting shapes with high
DoF transformations [8], it is hard to achieve real-time
performance. Another possible idea is to solve the 2D planar
edge pixels alignment problem by the iterative closest point
(ICP) methods [9], [10]. However, the direct ICP methods
are not able to recover non-rigid transformations, such as
affine and homography. Additionally, the speed of ICP is
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(a) disc #0001 (b) disc #0055

(c) disc #0178 (d) disc #0287

Fig. 1. Non-Lambertian object: a disc. These frames are
sampled from the same video sequence. Their intensities in
the disc regions are extremely different from each other.

often relatively slow and thus the real-time performance is
not guaranteed.

Hofhauser et al. developed an edge template detection
method using the metric defined on the differences between
the template edge pixels’ geometric gradient directions and
the image gradient directions [11]. Their method estimates
the perspective transformation based on the 2D translation of
the detected feature points. These feature points are locally
stable patterns comprised of clustered template edge pixels.
Hence, this approach is likely to fail in tracking simple
templates because of the aperture problem. Holzer et al.
estimated the homography between two closed boundaries
by adapting the Lucas-Kanade (LK) algorithm [12] in which
they substitute the image intensities for distance transform
maps [13]. This method works well with low texture targets
in a large scale range. One drawback is that the two input
closed boundaries have to be correctly recognized and no
outliers are allowed. Besides, it is not real-time.

Qin et al. proposed to track salient closed boundaries
by graph based line segments perceptual grouping in [14].
To obtain more accurate results, they replaced the straight
line segments with smooth edge fragments in [15]. The
prerequisite of this method is that the to-be-tracked targets
have to be closed. Additionally, this method is very sensitive
to occlusions, especially large area occlusions. Because its
grouping cost is usually defined proportional to the ratio of
the total gap length along the to-be-tracked boundary and
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Fig. 2. Workflow of our method

the boundary’s perimeter. Large area occlusions generate too
many big gaps which make the grouping cost meaningless.

To address the problems mentioned above, we propose a
novel edge template tracking method. We provide the code
for a real-time CPU implementation. Our contributions are
threefold: 1) We generate a new feature map of the to-be-
tracked edge template to suppress impacts of outliers. 2)
We introduce a smoothness term to define a new tracking
cost function for edge template homography estimation. The
cost function is optimized by a LK-like algorithm. 3) We
implement this edge template based object tracking method
and validate it on our newly collected real-world video
dataset. It outperforms the pertinent methods [16], [14], [15]
and achieves state-of-the-art performances.

The reminder of this paper is organized as follows. Section
II illustrates the method details. Section III presents the
experimental results. The conclusion is given in Section IV.

II. METHOD

In this paper, our goal is to track edge templates through
video sequences. Specifically we estimate the homography
transformation that relates the edge template between incom-
ing frames. As illustrated in Fig. 2, our method operates
on detected edge fragments instead of image intensities,
as is common in conventional template tracking [1], [2],
[12]. Given a video sequence, we manually initialize an
edge template at its first frame. Then, a feature map of
this template is generated. As the next frame comes, we
sample the most relevant pixels (we call them target pixels)
of the to-be-tracked target from its detected and filtered edge
fragments. We estimate the homography of the current frame
with respect to the template feature map by aligning those
target pixels and the feature map. The alignment problem is
solved by minimizing our newly defined cost function using
a LK-like algorithm [2]. The outputs of our tracking method
are transformed edge templates.

(a) initial template (b) scaled and completed template

Fig. 3. Template completing after scaling. (a) the red pixels
are sequentially stored, (b) the red pixels are computed from
the coordinates of those red pixels in (a) and the green pixels
are filled by line segments between two adjacently stored red
pixels.

A. Edge Fragments Detection

Edge fragments are well organized short one-pixel width
edge segments. Each edge fragment is comprised of several
sequentially stored edge pixels which belong to the boundary
of the same object. To obtain high quality edge fragments,
we use the fragments detection method proposed in [15].
Given a new frame, this method has two steps: detection
and splitting. First, it detects edge segments from the frame
by Edge Drawing (ED) [17]. The detected edge segments
are one-pixel width pixel chains. But most of the segments
are long and sometimes the edge pixels of the same edge
segment are erroneously grouped from different objects (such
as foreground and background). To avoid this kind of errors,
we split every detected edge segment into multiple shorter
and more straight edge fragments by a fast splitting method
proposed in [15]. For a 640 × 480 (width×height) image,
the edge fragments detection process needs less than five
milliseconds (ms).

B. Edge Template and Feature Map

Edge templates, as the main outputs of our method, are
represented by sets of sequentially stored edge pixels. In the
initial frame (the first frame or the frame where tracking
starts), we manually initialize the edge templates by a method
adapted from a boundary based annotation tool [18]. This
method allows users to select detected edge fragments for
creating edge templates. Compared with common boundary
initialization methods based on straight line segments draw-
ing, this method can produce more accurate and smoother
edge templates with light human workload. In an non-initial
frame, its edge template is obtained by transforming that of
its previous frame using estimated homography. The template
pixel chains manually selected in the initial frame are guaran-
teed to be continuous (see Fig. 3a). However, adjacent pixels
are likely to be detached because of transformation, such as
scaling (see Fig. 3b). To get edge templates with continuous
pixel chains, we fill the gaps between those detached adjacent
pixels by drawing straight line segments automatically, as
shown in Fig. 3. Although this way of template completing
is less accurate than spline fitting, it is more efficient and



easy to implement.
In our method, the feature map is a transform of the edge

template which facilitates the alignment and optimization. In
[13], the distance transform map D [7], [4] (see Fig. 4c) of
the template is directly taken as the feature map. But it is
sensitive to outliers. Hence, we propose to use F =

4
√
D as

the feature map (see Fig. 4d). The red and green lines in Fig.
4e illustrate the comparison between D and F . The blue and
black lines show the main difference between D2 and F 2.
As we can see, F 2 grows more gently so that it is able to
suppress the impact of outliers.

C. Target Pixels

As the new (the i-th) frame comes, our method detects its
edge fragments first, as illustrated in Fig. 2. Our purpose is
to align the detected edge fragments with the edge template
tracked from the last (the (i− 1)-th) frame. However, most
of the edge fragments in the new frame are outliers and re-
dundant. Hence, we remove those irrelevant edge fragments
based on the following two rules:
1) mean distance md > 10

md =

∑s
k=1Di−1(xk

i )

s
, (1)

2) mean absolute distance difference madd > 0.8

madd =

∑s−1
k=1 |Di−1(xk+1

i )−Di−1(xki ))|
s

(2)

where Di−1 denotes the distance map of the edge template
tracked from the (i−1)-th frame. xk

i represents the k-th pixel
of the current edge fragment, which was detected from the
current (i-th) frame. s is the pixel number of the current edge
fragment. Additionally, to achieve real-time performance in
the optimization process, if the total pixels’ number of these
retained edge fragments is more than 100, we uniformly
sample 100 edge pixels from them.

D. Tracking Cost

Given the feature map F of the last ((i−1)-th) frame and
the target pixels of the current (i-th) frame, we define the
tracking cost as:

C(p) = Ealign(p) + λEsmooth(p) (3)

where Ealign is the alignment error and Esmooth is the
smoothness term:

Ealign(p) =

n∑
j=1

mj∑
k=1

[F (W(xk; p))]2 (4)

Esmooth(p) =

n∑
j=1

mj∑
k=2

[F (W(xk; p))

−F (W(xk−1; p))]2

(5)

where p indicates the homography parameter of warping
the current frame back to the last frame. n and mj denote
the number of the retained edge fragments and the sampled
pixels at the j-th edge fragment. x represents the coordinate
of a target edge pixel. k and k − 1 are the indices of two

adjacently sampled pixels which belong to the same edge
fragment. λ is the a weight of the smoothness term. We use
a homography warp W [12]:

W(x; p) =
1

1 + p7x+ p8y

(
(1 + p1)x+ p3y + p5

p2x+ (1 + p4)y + p6

)
. (6)

In the cost function of the traditional LK [12], both tem-
plate (IT ) and target (I) are images (or feature maps), and LK
tries to minimize their differences

∑
[IT −I]2. In Ealign(p),

(4), however, although the template is still a gray scale image
like feature map (F ), the target x can be taken as a zero/one
mask (M ). Hence,

∑n
j=1

∑mj

k=1[F (W(xk; p))]2 equals to∑
[F ·M ]2 where · denotes element-wise multiplication.

E. Optimization
Our goal is to estimate p by minimizing the tracking cost

as arg minp C(p). In this paper, we solve this optimization
problem using LK-like algorithm [12]. Our solver initializes
p to an identity homography matrix. Then it iteratively solves
the following minimization problem:

arg min
∆p

C(∆p), (7)

C(∆p) =

n∑
j=1

mj∑
k=1

[F (W(xk; p + ∆p))]2+

λ

n∑
j=1

mj∑
k=2

[F (W(xk; p + ∆p))−

F (W(xk−1; p + ∆p))]2

(8)

and updates p as:
p← p + ∆p. (9)

Minimizing (8) and updating with (9) are iterated until the
estimate of p converges. We terminate the iteration when
|
∑n

j=1

∑mj

k=1[F (W(xk; p + ∆p))]−
∑n

j=1

∑mj

k=1[F (W(xk; p))]| < ε or the
number of iterations reaches a predefined maximum of 30.

In particular, we minimize expression (8) and compute
∆p using Gauss-Newton gradient descent method as fol-
lows:

∂C(∆p)

∂∆p
= 0 (10)

∆p = A−1b (11)

A =

n∑
j=1

mj∑
k=1

Jk
1

T
Jk

1 + λ

n∑
j=1

mj∑
k=2

Jk
2

T
Jk

2 (12)

Jk
1 =∇Fk

∂W

∂pk
(13)

Jk
2 =∇Fk

∂W

∂pk
−∇Fk−1

∂W

∂pk−1
(14)

b =

n∑
j=1

mj∑
k=1

Jk
1

T
F (W(xk; p)+

λ

n∑
j=1

mj∑
k=2

Jk
2

T
[F (W(xk; p))− F (W(xk−1; p))].

(15)



(a) video frame (b) edge template (c) distance map (d) feature map (e) profile of lines in (c) (d)

Fig. 4. Feature map. In (e), the red line D corresponds to the red line in (c), SD = D2, the green line F corresponds to
the green line in (d), SF = F 2.

Algorithm 1 Optimization
Pre-compute:

1) Warp template edge pixel xtp to initialize xtpi
=

W(xtp; pi−1) at frame i
2) Generate the feature map F based on xtpi

3) Evaluate the gradient 5F of the feature map F
4) Sample n edge pixels xtr from the current frame

Iterate:
5) Warp target edge pixel to compute:

xtritr = W(xtr; ptmp)
6) Evaluate the ∂W

∂p at xtritr

7) Compute 5Fk
∂W
∂pk

and 5Fk
∂W
∂pk
−5Fk−1

∂W
∂pk−1

at
xk

tritr
and xk−1

tritr
8) Compute (12) - (15)
9) Compute ∆ptmp using (11)
10) Update the parameter ptmp ← ptmp + ∆ptmp

until ‖∆error‖ < ε and itr > 30
11) Update the parameter pi ← inv(ptmp) ∗ pi−1

The optimization process is summarized as Algorithm 1.

III. EXPERIMENTAL RESULTS
To evaluate the performance of our proposed tracking

method, we test it on five newly collected video sequences
and compare it’s performance with other four pertinent
methods1.

A. Dataset and Evaluation Measure

We collect five video sequences (1896 frames in total).
The frame size is 640×480 (width×height). As shown in
Fig. 6, these to-be-tracked targets are planar rigid edge
templates including box rim, cup rim, hexagon rim, ring
contour and disc contour. Their motions and transformations
can be described by 2D planar homography matrices. Except
for edges, there are few stable and salient regional textures
on these targets. In addition, partial occlusions are also
introduced in some frames of every video sequence.

We quantitatively evaluate our method using the error
metric defined in [14] and [15]:

Error = max{
E ⊗DistEgt

PE
,
Egt ⊗DistE

PEgt

}, (16)

1video: https://youtu.be/ohnUCm-Ffc4

where E and Egt are the tracked edge template and the
ground truth template (manually labeled by ByLabel [18]).
DistE and DistEgt

denote the distance transform maps of E
and Egt. PE and PEgt indicate the pixel number of E and
Egt respectively. ⊗ represents the summation of element-
wise multiplication. A tracker’s overall accuracy on a given
sequence is measured by the success rate [2], which is
defined as the ratio of frames where the tracking error Error
is less than a threshold of et pixels and the total frames.

B. Quantitative Evaluation
We compare our tracking method against the following

four methods: DIST which tracks a given edge template
using distance transform as template’s feature map, RRC
[16] which is adapted from a salient boundary grouping
method, BDSP [14] which is a closed boundary tracking
method via graph based line segments perceptual grouping
and EFG [15] which is an edge fragments grouping based
contour tracking method. To implement DIST, we adapt our
method by replacing F =

4
√
D with F = D and maintaining

other settings. The parameters of RRC, BDSP and EFG are
set to their default values as described in [16], [14] and [15].

Fig. 5 illustrates the success rate curves of these methods.
Note, that our method outperforms others on the five video
sequences in terms of success rate and overall average error
(see, Table I).

DIST easily fails from outliers (see green edges in Fig.
6c, 6i, 6l, 6s and 6w). The outliers are usually edge pixels
related to occlusions and background. The feature map of
DIST (Fig. 4c and blue line in 4e) is not able to suppress
the impacts of those pixels.

RRC, BDSP and EFG work well in the hexagon sequence
(see Fig. 5c). Although the partial occlusions, such as those
shown in Fig. 6m and 6n, produce certain tracking errors,
they fail to collapse these three trackers. Because the target
motion in this sequence is relatively slow and the target
contour has strong saliency. However, RRC fails quickly
in the other four sequences due to outliers and large area
occlusions, see yellow contours in Fig. 6c 6i, 6r and 6x.
Although BDSP and EFG perform better than RRC on the
mug and ring sequences respectively (see Fig. 5e and 5b),
they are still less competitive than our method in terms of
success rates (see Fig. 5e and 5b) and overall average errors
(see Table I). Experiments on sequence box (Fig. 5a) and disc
(Fig. 5d) further demonstrate the robustness of our method.

https://youtu.be/ohnUCm-Ffc4


TABLE I. Overall average error (pixel)

Method Ours DIST RRC BDSP EFG
box_359 1.72 23.63 39.08 20.18 24.96
disc_390 0.69 25.05 61.89 8.48 55.84

hexagon_389 2.27 48.08 4.64 3.55 2.31
mug_372 1.64 17.30 53.61 3.15 27.06
ring_386 1.57 41.28 85.26 85.26 2.66
average 1.58 31.07 48.90 24.12 22.57

TABLE II. Average time cost of our method (ms)

Video box mug hexagon ring disc
ave. detection 4.88 4.61 4.35 3.51 4.89
ave. splitting 2.76 2.73 4.67 2.64 3.12
ave. optimization 23.65 23.91 24.24 23.07 22.09
ave. total 31.29 31.25 33.26 29.22 30.10

Compared with DIST, our method uses F =
4
√
D (see

green line in Fig. 4e) as the feature map, which reduces the
impacts of outlier pixels greatly (see the second and third
column in Tab. I). Different from grouping based methods
RRC, BDSP and EFG, our method relies on the homography
transformation which provides more strict constraint than
saliency measure. Together with the newly proposed feature
map and tracking cost, our method achieves higher accuracy
(see the fourth, fifth and sixth column in Tab. I) and more
robust performance to large area occlusions (see Fig. 6c and
6v).

C. Runtime

We implement our tracking method using C++ and
OpenCV on a machine with a quad core 3.10 GHz Intel
Core i5 processor, 16GB RAM and Ubuntu 14.04 64-bit
OS. The average processing speed of our method on each
of the five video sequences is illustrated in Table II. As we
can see, the speed of our method mainly depends on three
parts: edge detection, edge splitting and optimization. The
optimization costs the most time. It is worth to note that our
implementation is an unoptimized version. The average total
time cost of each frame is about 30 ms, which means our
method is acceptable in real-time applications.

IV. CONCLUSIONS

We proposed a novel method for rigid planar edge tem-
plate tracking using a feature map derived from a distance
transform on image edges. The feature map is defined as the
fourth root of the distance transform. This suppresses the
impacts of outlier pixels and improves robustness greatly.
Instead of conducting optimization using independent edge
pixels directly, our method detects edge fragments and
filtered some obvious outliers via simple thresholds. To
guarantee real-time performance, a certain number (100) of
edge pixels are sampled along these retained edge fragments
uniformly and sequentially for the optimization. We eval-
uated the performance of our method on real-world video
sequences and compared it to other tracking methods. The
results demonstrated that our method performs better than
others in terms of robustness and accuracy. The real-time
speed of our method is also validated. The results show

that our method is promising in real-time computer vision
and robotics related applications, such as Augmented Reality
(AR), robot localization and visual servoing.
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(a) box_359 (b) mug_372 (c) hexagon_389 (d) ring_386 (e) disc_390

Fig. 5. Success rate. The number after the underscore is the frame number of each sequence, e.g. (a) box_359 means that
the box sequence has 359 frames.

(a) box #0001 (b) box #0088 (c) box #0218 (d) box #0295 (e) box #0359

(f) mug #0001 (g) mug #0113 (h) mug #0164 (i) mug #0290 (j) mug #0372

(k) hexagon #0001 (l) hexagon #0080 (m) hexagon #0266 (n) hexagon #0331 (o) mug #0389

(p) ring #0001 (q) ring #0057 (r) ring #0068 (s) ring #0267 (t) ring #0386

(u) disc #0001 (v) disc #0055 (w) disc #0206 (x) disc #0290 (y) disc #0390

Fig. 6. Tracking results of sampled frames.


