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Abstract—This paper presents a novel feature grouping based
framework for building facade recognition from aerial images.
A combination of Maximally Stable Extremal Regions (MSERs
and steered Determinant-of-Hessian (steered-DoH) are proposed
to detect different shapes of blobs from images. Then we employ
local parallelogram grouped by these repetitive and evenly
distributed blobs to form an point-based regularity measurement.
Building facade regions are indicated by these local parallelo-
grams. In our work, we use Delaunay Triangulation (DT) to guide
the search of local parallelograms. Our approach can handle
images with large range of resolution. Vertical and horizontal
assumptions of facades are not required. The experimental results
conducted on images with different resolutions and different
types of facades demonstrate superior performance on facade
recognition both in terms of speed and accuracy (F1 — score
over 80%) over state-of-the-art methods.

I. INTRODUCTION

With the development of photogrammetry and remote sens-
ing, high resolution aerial images analysis has become a
popular yet challenging area of computer vision research.
Recognizing buildings is important, and facades are their
essential defining features. Applications are in building model-
ing, navigation, damage assessment and emergency response.

A number of methods for building facades recognition have
been proposed. They can be categorized as following three
classes:

(1) Stereo view or three dimensional (3D) point cloud
assisted facade extraction. Zebedin et al. [1] adopt an image-
based optimization method to estimate the precise position
of vertical facade planes in Digital Surface Model (DSM)
reconstructed from aerial images. Meixner and Leberl [2]
characterize building facades by mapping 3D facade key
corners to 2D aerial images. Zhao et al. [3] and Delmerico
et al. [4] extract facades from ground-level images. However,
to obtain 3D point cloud from large-scale aerial images is time
consuming and may fail on the repetitive structure of facades.

(2) Edges or straight line segments based facade extraction.
Bansal et al. [5] use satellite images to find contours of
building roofs, then map them to corresponding building roofs
and their ground boundaries in aerial images by a homography
to determine the facade regions. Liu et al. [6] recognize facade

areas according to the edge-based vertical and horizontal
regularity assumptions. Xiao et al. [7] also use vertical and
horizontal lines to extract building facades. However, the
assumption can be violated in case of poor data calibration,
and for damaged or old buildings. Yang et al. [8] extract
facade regions using straight line segments based multi-level
feature extraction. This method judges line directions through
cluster analysis instead of vertical and horizontal assumptions.
However, easy failures on line segments detection makes it
fragile.

(3) Repetitive patterns based facade recognition. Wendel
et al. [9] employ intensity profile descriptors and a voting-
based matcher to detect repetitive regions from street level
images. However, aerial images have much lower resolution
than streetside images, and can not provide discriminative
intensity profile descriptors. Schindler et al. [10] use SIFT
[11] to extract facade feature points and then introduce a
variation of RANSAC-based planar grouping method to detect
perspectively distorted lattices of these points. Park et al. [12]
propose to substitute SIFT with Kanade Lucas Tomasi corners
(KLT) [13], Maximally Stable Extremal Regions (MSER)[14]
and Speeded Up Robust Features (SURF) [15] to get more
feature points, then cluster and group these points to detect
lattices. However, these methods mainly work with those large
and highly repetitive building facades. In addition, the state-
of-the-art lattice detection algorithm [16] used in [12] and [10]
is computationally expensive for aerial images.

In this paper, we also use repetitive patterns to detect
building facades, but require neither vertical and horizontal
assumptions nor edge and line segment detection. Hence,
this method is robust to the variation of building facade
condition and image resolution. We substitute the general
feature points extraction algorithms with our newly proposed
approach, which combines MSERs and steered Determinant of
Hessian. In addition, instead of adopting the lattices grouping
method developed in [16] we use Delaunay Triangulation (DT)
to guide local regularity searching. This grouping method can
work with not only large and highly repetitive facades, but
any facades with at least four regularly distributed windows.
Furthermore, it speed up the search process greatly.
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Fig. 1. Workflow of facades recognition

II. FACADE RECOGNITION PROCEDURE

Low-level facade features (e.g. windows) are generally
distributed in a regular pattern. The human visual system can
easily recognize these kinds of patterns. Perceptual grouping
refers to the ability to extract salient image patterns and struc-
tures from low-level image features without prior knowledge
of high-level image content [12]. Our proposed procedure
follows this concept, as shown in Fig. 1. Instead of detecting
many types of features [16], only MSERs features are detected.
Then, a steered Determinant of Hessian is used to find the most
salient MSERSs features in local areas. Different from iterative
procedure of perceptual grouping [12], we introduce Delau-
nay Triangulation to guide parallelogram perceptual grouping
thereby avoiding the heavy computing cost of iteration. We
experimentally validate our method on aerial images with
different resolutions (0.1-m and 0.3-m) and different facade
characteristics.

A. Parameters Tuning of MSERs Detection

MSERSs were originally proposed for wide-baseline match-
ing. They are defined by an extremal property of the inten-
sity function in the region and on its outer boundary [14].
Intuitively, they are regions that have either higher or lower
intensity than their surroundings [17], and can be different
shapes. We use MSERs to detect features since it is capable
of detecting arbitrary-shape regions as a whole. This is useful
for features perceptual grouping.

In the original formulation, the parameter ¢(i) =
|Qi+a\Qi—Al|/|Q:|, which represents the stability, is used to
control the MSERs detection [14]. Q1,...,Qi—1,Qs, Qit1, -
(Q; C Q;+1) are a sequence of nested extremal region
candidates generated by thresholding image using different
intensity level i. ¢(¢) represents the normalized area variation
between ;1A and ;A with respect to ;. Extremal region
Qi+ is maximally stable iff g(ix) is a local minimum of ¢(z).
Nevertheless, being maximally stable does not guarantee that
an extremal region is an MSER. In general, its area (|Q;.|)
and variation(g(ix)) must satisfy certain requirements.

In addition,several parameters of MSERs detector should
be determined according to image characteristics. The change
rate of ¢ is set to 3 in this work. The area interval threshold
[MinArea, MaxArea] that we use for extract more facade
features is approximately determined by the ratio ra = S/R of
feature size (S) and image resolution(R). In practice, we tend
to use a wider range of area interval (i.e. [4,10000]) to detect
more features. In addition, high variation (¢g(¢)) threshold will
produce many redundant features while low one often miss
lots of critical features. Therefore, We set variation threshold
to a experience value 0.25. Note that the outputs of MSERs
detection are ellipses (described as center, axes length (major
axis a and minor axis b) and orientation (@, direction of major
axis a with respect to z axis)) generated by fitting MSERs
regions.

After detection, redundant nested MSERs are inevitable
since their variations are at local minima. Instead of eliminat-
ing redundant features by searching global minimum variation,
we employ another more efficient and robust filter constructed
by steered Determinant of Hessian.

B. Steered Determinant of Hessian

Hence, we propose to use the response of Determinant of
Hessian (DoH) to eliminate redundant nested MSERs. The
scale-normalized DoH Eq.(1) give strong responses on blobs
and ridges [18].
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where Lg.,L,, and L.y, L,, are partial derivatives of
L(x,0) = g(0) ® I(x) where x = (x,y). g(d) is an isotropic,
circular Gaussian kernel of scale when 4, = d, = J:
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The problem is when d, = d, = J the elongated blobs
cannot be detected effectively (Fig. 2 (a)). Therefore, affine
Hessian detector was developed in [19]. It uses an iterative
method to estimate the affine transformation and local pattern.
To simplify this process we use the steered Determinant of
Hessian Eq. (3) which is constructed by the second partial
derivatives Eq. (5), Eq. (6) and mixed second partial deriva-
tives Eq. (7) of a aisotropic, elliptic Gaussian kernel Eq.(2)
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Fig. 2. Isotropic and Aisotropic Filter



(6, # 6y) to filter the redundant nested MSERs, as shown in
Fig.2 (b).
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where
0z = a,0y = b,

u = zcos(f) — ysin(0),
v = xzsin(0) + ycos(0).
C. Delaunay Triangulation Induced Perceptual Grouping

Due to the large distance between the camera and building
facades in aerial images the local perspective deformation can
be approximated by an affine transformation which preserves
parallelity. Therefore, we propose to use a Delaunay Triangu-
lation (DT) [20] induced parallelogram searching method to
group MSERs.

Given a set of MSERs feature points, their spatial neighbor-
hood relations are first represented by a Delaunay Triangula-
tion. Two adjacent triangles (T, T2) with one common side
construct a quadrilateral as illustrated in Fig. 3. Then, similar
to [12] three points {p1;p2;ps} of a triangle are sampled
to form a (a, b) vector pair given by p; — p2 and p; — ps.
If the quadrilateral is a parallelogram, p4 should equal to p’
which is calculated by a+ b + p1. In practice, if the distance
d between py and p’ is less than certain threshold (i.e. 5
pixels), the quadrilateral will be taken as a parallelogram. The
Delaunay Triangulation induced parallelogram searching and
grouping algorithm is shown in Algorithm. 1.

p! a p2

Fig. 3. Parallelogram Grouping

Parallelograms which have common side are grouped as
facade areas. However, each group may not represent a whole
facade accurately but a part of it.

Algorithm 1 Delaunay Triangulation Induced Feature Group-
ing
Input: Feature points set P defined by the centers of MSERs
features
Output: Facades set F: each element in F is comprised of
several triangles
1: Generate Delaunay Triangulation T from feature points P
2: repeat

3: Search neighbor triangles (t,, and t¢,,) which have
common side s;

4: Compute d; between p4 and p’ according to Fig. 3

5: If(d; < 5){mark both triangles as 1}

6: until (all sides s in T have been processed)

7: Cluster triangles which are marked as 1 according to their

connectivity
8: Return clusters F

D. Noise removal

Although many of the MSERSs feature points are randomly
distributed in non-facade areas, there still exist a few non-
facade points which coincidently satisfy the structure of par-
allelogram (False Positive). Fortunately, these false positives
are usually isolated from each other. Therefore, it is possible
to eliminate them by checking the number of parallelograms
in each group. In this paper, we eliminate those groups which
contain only one parallelogram (two adjacent triangles).

III. EXPERIMENTAL RESULTS

To assess the performance of our method, experiments were
conducted on a 8162 x 5986 pixel and a 7952 x 3161 aerial
image with 0.1-m and 0.3-m resolution respectively. It is worth
to note that the second image comes from a post-earthquake
area and many buildings are tilted or partially damaged.
Therefore vertical or horizontal assumptions of facades are
not satisfied. The ground truth of facades in these two images
have been manually labeled as red boxes, as shown in Fig. 4.

A. Evaluation and Comparison of Facade Recognition

The qualitative results of our facade recognition are given
in Fig. 4. The straight line grouping (SLG) based algorithm
[8] has been shown to effectively extract building facade
areas without making vertical and horizontal assumptions. To
quantify the facade feature extraction results, three frequently
used metrics [21] were introduced. Precision (Equation. 8)
indicates the extent to which the detected facades correctly
correspond to ground truth. Recall (Equation. 9) is a measure
of the omission error. F'1—score (Equation. 10) is a composite
metric that take both correctness and completeness in consid-
eration. The quantitative comparisons between our method and
SLG are illustrated in Table I and Table II. The results suggest
that the performance of our method and SLG are similar when
the image resolution is high (0.1-m). However, our algorithm
is much more robust when image resolution decreases. SLG
fails when the image resolution is 0.3-m, while our method still
achieves I} —score over 80%. The reason is that straight lines



Fig. 4. Facade recognition results




TABLE I. Comparison of facade recognition (0.1-m)

TABLE III. Quantitative assessment of feature extraction

No. No. No.

No. No. No.

Method of of of Precision  Recall fc lor_e Method of of of Precision  Recall fc lo:e
TP FP FN TP FP FN

SLG 112 3 15 97.3% 88.2% 92.5% SURF 151 637 90 19.16% 62.66% 29.35%

Our 115 11 15 91.3% 88.4% 89.8% Our 229 18 12 92.71% 95.02% 93.85%

Notes: our method can detect some facades which can not be defined by
straight line grouping so that our Nop + Ny is greater than SLG.

TABLE II. Comparison of facade recognition (0.3-m)

No. No. No.

Method of of of  Precision Recall SFc lo:e
TP FP FN
SLG - - - - - -
Our 52 7 13 88.1% 80.0% 83.9%

of windows can not be extracted effectively in low resolution
images as shown in Fig. 5.

precision = L ()
Nrp+ Nrp
Nrp
recall = ——— 9)
Nrp + Npn
2Nrp

Fy — Score = (10)

2Ntp + Npp + Npn
where Nrp, Nrpp and Ny are the number of true positives,
false positives and false negatives.

B. Evaluation and Comparison of Feature Detection and
Grouping

We validate the effectiveness of the combination of MSERs
and steered-DoH proposed as a facade feature detector by
showing the results of four typical facades. As shown in Fig. 6,
the performance of our method is much better than SURF [15]
in extracting facade features, especially for extracting long
structures. The quantitative assessment of these four typical
facades feature extraction is demonstrated in Table III. The
results show that our feature detector extract accurate facade
window blobs with less noise. These extracted features enable
the success of subsequent perceptual grouping.

Furthermore, we also evaluate efficiency and effectiveness
in a quantitative comparison with deformed lattice detection
[16] on the process of feature grouping on these typical
facades. The algorithm of [16] is implemented in hybrid of
C++/OpenCV and MATLAB, while ours is implemented in

(a) high resolution(0.1-m)

(b) low resolution (0.3-m)

Fig. 5. Straight lines extraction [22]

TABLE IV. Total time(s) consumption per facade

Method F1 F2 F3 F4
Lattice 128.9330  62.3260  79.0490  81.7410
Our 6.2001 4.8221 7.4086 6.9834

MATLAB. Both algorithms run on the same machine with
a 2.53GHz i5 CPU, 8GB RAM and a Windows 7 64-bit OS.
The deformed lattice detection approach has much lower recall
than ours, especially on those facades whose windows have
different size and shapes (Fig. 6). In addition, our algorithm
has a speed advantage, Table IV. The Delaunay Triangulation
based grouping finds local parallelograms and then groups
them together. Hence parallelograms in one facade do not all
have to be the same. That means facades which have different
size of window blobs and intervals between blobs can also
be grouped correctly. As shown in the fourth row of Fig.6,
[16] just groups points with same intervals and fails when the
window size changing. Our DT induced group has no problem
with that case.

IV. CONCLUSION

This paper concerns the problem of large-scale facade
recognition from aerial images. Our approach leverages prop-
erties of repetitive patterns of building facades, namely large
number of evenly distributed window blobs. Repetitive win-
dows are used as an indicator of the presence of a facade
region. Through the combination of MSERs and steered-
Difference-of-Hessian, we have obtained promising facade
feature extraction results from images with different resolu-
tion. This leads to accurate feature grouping in the second
stage. Delaunay Triangulation induced parallelogram search-
ing brings a notable reduction of computation cost and better
performance than traditional solutions. Finally, a set of facade
regions is represented by successfully grouped triangles. We
have compared experimentally and quantitatively with state-
of-the-art algorithms. The results show that our approach have
superior performance on our challenging datasets. The source
code will be distributed later.
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