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Accurate Outline Extraction of Individual Building
from Very High Resolution Optical Images

Xuebin Qin, Shida He, Xiucheng Yang, Masood Dehghan, Qiming Qin, and Martin Jagersand

Abstract—This letter presents a novel approach for extract-
ing accurate outlines of individual buildings from Very-High-
Resolution (VHR, 0.1-0.4 m) optical images. Building outlines
are defined as polygons here. Our approach operates on a set
of straight line segments that are detected by a line detector.
It groups a subset of detected line segments and connects
them to form a closed polygon. Particularly, a new grouping
cost is defined firstly. Second, a weighted undirected graph
G(V,E) is constructed based on endpoints of those extracted
line segments. The building outline extraction is then formulated
as a problem of searching for a graph cycle with the minimal
grouping cost. To solve the graph cycle searching problem, the
"Bi-Directional Shortest Path (BDSP)" method is utilized. Our
method is validated on a newly created dataset which contains 123
images of various building roofs with different shapes, sizes and
intensities. The experimental results with average Intersection-
over-Union of 90.56% and average alignment error of 6.56 pixels
demonstrate that our approach is robust to different shapes of
building roofs and outperforms state-of-the-art method.

Index Terms—Building recognition, outline extraction, percep-
tual grouping, graph optimization.

I. INTRODUCTION

ACCURATE building outline extraction is important to ur-
ban planning, cadastral surveying and other related appli-

cations. Building outlines extraction from very high resolution
(VHR) images has become a popular yet challenging topic
in the fields of photogrammetry, remote sensing, geographic
information system (GIS) and computer vision.

There already exist many methods for building outlines
extraction from aerial and satellite images. Image segmen-
tation based methods [1], [2], [3], [4], [5] is a popular
class of methods. Cote and Saeedi [6] combine distinctive
corners detection with level-set method to fit the best possible
boundaries of building rooftop. Song and Shan [7] adopt
active contour models and intensity based cluster to extract
building boundaries from satellite images. Yang and Wang
[8] extract building contours using shape priors constrained
level set method. These methods are sensitive to initialization,
local minimum and noise. In addition, perceptual grouping
[9] [10] and deep learning based approaches [11] have also
been proposed. However, the approach proposed in [9] is not
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able to extract non-rectangular building outlines. Because its
grouping rules are designed according to the basic attributes of
rectangles: four sides with right angles. Learning based build-
ing extraction methods [11] require large number of training
data and their results are usually region masks with relatively
coarse contours. Little attention has been paid to obtaining
accurate and detailed outlines of individual buildings.

This work focuses on extracting accurate outlines of indi-
vidual buildings with different shapes. The accurate outline
extraction is formulated as a salient object detection problem.
There are mainly two classes of salient object detection
methods: intensity based and edge based.

The intensity based methods detect objects using the
saliency measure defined on the difference or contrast between
foreground and background pixels. Yang et al. [12] utilize
superpixels of a given image as nodes to construct a close-loop
graph. The saliency maps are obtained by ranking these nodes
according to their similarities to background and foreground
queries based on affinity matrices. Zhu et al. [13] propose a
background measure to characterize the spatial layout of image
regions with respect to image boundaries. They integrate
multiple low level cues and the background measures into
their optimization problem. Srivatsa and Babu [14] estimate
the foreground regions using objectness proposals and then
other pixels/regions are weighted by their proposed saliency
measure. They integrate these weights into an optimization
framework to obtain the final saliency map. Zhang et al.
[15] develop a salient object detection method by solving an
approximate Minimum Barrier Distance (MBD) Transform,
which achieves 100X speedup over the exact MBD algorithm.
The outputs of these methods are usually saliency maps with
coarse or uneven boundaries of the target objects.

The edge based methods usually define saliency measure
based on the properties of to-be-extracted object boundaries,
such as curvature, gap, length, enclosed region area, etc.
Gestalt laws [16] and perceptual grouping are their theoretical
basis.

Kokkinos [17] proposes a fractional-linear programming
approach to find the most salient boundary. Lu et al. [18]
create a contour saliency measure subject to completeness and
tightness constraints, and optimize it using dynamic program-
ming in polar coordinate system. However, the transformation
between Cartesian coordinate system and polar coordinate
system decreases the accuracy of boundaries. Wang et al.
[9] extract rectangular building outlines by grouping straight
line segments according to their distances and angles, but
only simple rectangular buildings can be extracted and several
parameters have to be tuned carefully. Wang et al. [19], [20]
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develop a graph-based method for salient closed boundaries
detection. This method selects and connects a subset of edge
fragments sequentially to form a closed boundary with the
saliency maximum. Although they can handle more irregular
shapes than [9], the cost function in their optimization is not
adapted for building outline extraction.

As buildings are artifacts with rich straight line features, our
method is based on grouping detected straight line segments,
similar to [19], [20]. The main contributions of this work
are: (1) a novel grouping cost for individual building outline
extraction; (2) a novel optimization framework that is able to
handle cost functions tailored for grouping costs with different
formats; Part of the optimization algorithm is presented in [21]
for real-time tracking of objects in videos.

The rest of this letter is organized as follows. Section
II describes the details of proposed grouping cost and the
optimization approach. Experimental results and comparison
are given in Sec. III, with the concluding remarks in Sec. IV.

II. PROPOSED METHOD
Given a VHR image, our goal is to group a subset of

detected line segments and form a polygon which describes
the accurate outline of a target building. First, a novel grouping
cost, which is composed of the completeness (or closure) and
smoothness (or continuation) [16], is defined. Then the straight
line segments are detected from the given image to construct
a weighted undirected graph G(V,E). Finally, the grouping
process is formulated as searching for the optimal cycle in the
weighted undirected graph.

A. Derivation of Grouping Cost

1) Completeness: An intuitive definition of completeness
requires the ratio of non-edge pixel number over the total
pixel number along a closed curve to be sufficiently small
(the optimum is zero) [18]. Given a closed curve Γ, the
completeness cost C(Γ) is defined:

C(Γ) =

¸
Γ
e(s)ds¸
Γ
ds

(1)

where

e(s) =

{
0 s is an edge pixel
1 s is not an edge pixel

(2)

2) Smoothness: The smoothness cost S(Γ) of a closed
curve Γ is given by the Elastic prior [17], [22]:

S(Γ) =

¸
Γ
|κ(s)|ds¸
Γ
ds

(3)

where κ(s) is the curvature of edge pixel. The numerator
denotes the total absolute curvature and measures how far the
curve is from a convex curve [23].

Our method operates on a set of straight line segments that
are extracted by a line detector. As the curvature at straight
line intersections is not well defined, we approximate the total
absolute curvature term of (3) as:˛

Γ

|κ(s)|ds ∝
¸
Γ
ds˜

R
dA

(4)

(a) Line Segments (b) Delaunay Triangulation (DT)

(c) Graph G(V,E) (d) Bi-Directional Shortest Path

Fig. 1. Graph construction and optimization

where R is the region enclosed by contour Γ. The smoothness
term can be further simplified using (3) and (4) to:

S(Γ) ∝ 1˜
R
dA

(5)

In other words, this term is reciprocal to the area of region R
enclosed by Γ.

3) Grouping Cost: Grouping cost is typically formulated as
a weighted summation of completeness and smoothness [18]:

G(Γ) = C(Γ) + λS(Γ) =

¸
Γ
e(s)ds¸
Γ
ds

+ λ · 1˜
R
dA

(6)

where λ is a weight that balances the completeness and
smoothness. However, (1) and (5) are two incomparable
measures with different units. This makes the tuning of λ a
hard process for obtaining good results. In fact, the choice of
optimal λ is shape-dependent and differs for different images.
This will be further elaborated in the experimental results.

This motivate us to propose a new Grouping Cost G(Γ) as
the multiplication of these two terms:

G(Γ) =

¸
Γ
e(s)ds¸
Γ
ds

· 1˜
R
dA

. (7)

In this work, the building outlines are depicted by polygons.
The Grouping Cost G(Γ) of a polygon, comprised of n
detected line segments and k gaps, is defined as:

G(Γ) =

∑k
j ej

(
∑n

i li +
∑k

j ej)
· 1

A
(8)

where ej denotes the length of a gap between two sequentially
connected line segments and

∑k
j ej is the total gap length

along polygon, li indicates the length of a line segment and
(
∑n

i li +
∑k

j ej) is the perimeter of the polygon and A is the
area of the polygon. The polygon with the smallest G(Γ) is
taken as the final optimal outline.
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B. Graph Construction

Given a VHR image, its straight line segments are first
detected by EDLines [24]. Fig. 1(a) shows the detected line
segments of an VHR image. Each line segment is represented
by a pair of endpoints. As detected line segments are not
connected, Delaunay Triangulation (DT) [25] is utilized to
fill the gaps between them (see Fig. 1(b)). Then detected line
segments are superimposed on a generated Triangular Irregular
Network (TIN) to construct an undirected graph G(V,E) (see
Fig. 1 (c)). Each node in the graph corresponds to an endpoint.
A graph edge correspond to either a TIN edge (blue line) or a
detected line segment (red lines). Note that there are two types
of graph edges and their weights are set differently similar to
[20]. For a TIN edge, the weight is set to its geometric length
which is in fact the gap length. The weight of a line segment
is set to zero. This means that line segments are more likely
to be a part of building outlines.

C. Optimal Outline Search

A building outline corresponds to a special cycle, which
has the minimal grouping cost (8), in the weighted undirected
graph G(V,E). Minimum Ratio Weight Cycles (MRWC) [19],
[26] are most commonly used algorithms for the grouping
cost optimization. However, the denominator of our grouping
cost (8) is multiplication of two terms which cannot be solved
with MRWC methods. This section describes our algorithm
for finding the optimal cycle based on the grouping cost (8).
Our search algorithm has two steps: (1) Cycle Candidates
generation; (2) optimal outline retrieval.

In the first step, a set of cycle candidates are generated based
on our recent method [21] called “Bi-Directional Shortest Path
(BDSP)”. As shown in Fig. 1 (d), a cycle is considered as a
candidate if it consists of the following three components: 1) a
zero-weight edge Ei (white edge); 2) a shortest path from the
start node Vis of the edge Ei to a third node Vj (yellow path);
3) a shortest path from the end node Vie of the edge Ei to
the same third node Vj (green path). For each zero weighted
edge, we first set its weight to infinity and then traverse all
of the third nodes on the graph to generate cycle candidates
by BDSP. This means that for a graph with n zero-weighted
edges, there are n× 2(n− 1) cycle candidates.

In the second step, the grouping cost (8) for each cycle
candidate is computed. The cycle candidate with the minimal
grouping cost is taken as the final optimal building outline.

III. EXPERIMENTAL RESULTS

A. Dataset and Error Metric

To assess the performance of our approach, a new dataset
for building outline extraction on VHR aerial and satellite
images of urban areas is built using [27]. The resolution of
these images varies from 0.1-0.4 m. The dataset1 contains
123 images of buildings with different shapes. The accurate
Ground Truth (GT) is manually labeled for all the images.

To quantify building outline extraction results, two accuracy
measures are used: a region-based and an edge-based measure.

1https://webdocs.cs.ualberta.ca/~xuebin/building_extraction.html

Ours λ=100 λ=1000 λ=10000

Fig. 2. Results based on grouping cost (6): the size of top row
image is 116×108, the size of bottom row image is 501×439

The region-based measure is Intersection-over-Union (IoU )
which is defined as the relative region coincidence [19]:

IoU =
|R ∩RGT |
|R ∪RGT |

× 100% (9)

where RGT and R are the regions enclosed by the ground truth
and extracted building outline, respectively. |R| indicates the
area of R.

The edge-based measure used is the average Alignment
Error (EaveAl) which is defined as

EaveAl =
DistGT ⊗ IΓ
|IΓ|

(10)

where DistGT is the distance transform map of the ground
truth region boundary. IΓ is the extracted binarized outline
map and |IΓ| is the perimeter of the outline Γ.

B. Evaluation and Comparison

Both summation-based grouping cost (6) and multiplication-
based grouping cost (8) can be optimized using our "BDSP"
algorithm. However, in (6), the choice of the weight λ has to
be tuned carefully for different images, especially when these
buildings have big differences in their shapes and sizes. This is
further illustrated in Fig. 2, where the results of the algorithm
for summation-based cost is shown for different values of λ. It
can be seen that it is not possible to achieve a good accuracy
on both images using the same λ. Our multiplication-based
grouping cost (8), on the other hand, resolves this problem. It
works well on both of these two buildings without parameters
tuning, see the first column in Fig. 2.

Our method is compared with other five state-of-the-art
methods: (i) a regional information combined ratio contour
method (RRC) [20], (ii) a minimum barrier salient object
detection method (MB+) [15], (iii) a saliency detection method
via graph-based manifold ranking (MR) [12], (iv) an object-
ness measure based salient object detection method (SO) [14],
and (v) a saliency optimization based method (wCtr) [13].
The RRC method is the state-of-the-art line-based grouping
method. The direct outputs of our method and RRC are
grouped polygons. To facilitate comparison, they are presented
as binarized region maps in Fig. 3. Methods (ii)-(v) are
regional intensity-based methods. Their original results are
saliency maps represented by normalized gray scale images (0-
255). In our experiments, these saliency maps are thresholded

https://webdocs.cs.ualberta.ca/~xuebin/building_extraction.html
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Fig. 3. Sample results of different methods: the first column is the original image, the second column is the ground truth, the
third column is the result of our method, column four to column eight are results produced by RRC, MB+, MR, SO and wCtr.

(a) Ordered IoU (b) Success on IoU threshold (c) Ordered EaveAl (d) Success on EaveAl threshold

Fig. 4. Region and edge based evaluations. (a), (b) and (c), (d) are region based and edge based evaluations respectively. (a)
and (c) are ordered IoU and EaveAl of the testing images. (b) shows the number of images where the IoU is greater than
certain threshold. (d) shows the number of images where the EaveAl is less than certain threshold.

TABLE I. Overall average IoU and EaveAl

Method Ours RRC MB+ MR SO wCtr
IoU 90.57 82.67 66.67 72.23 76.36 64.32

EaveAl 6.54 9.52 20.17 17.76 13.87 15.87

(the threshold is set to 125 because it provides almost the
best overall performance of these methods according to our
thresholding tests.) to obtain binarized buildings’ regional
segmentation. The building outlines are then obtained via edge
extraction from those binarized images.

Fig. 3 shows sample results of different methods. The key
challenge of building outlines extraction by using grouping
based method is to resist the impacts of many detected noisy
line segments which are close to the target building. RRC
fails easily in complex and concave shapes, see row 1-6.

It is sensitive to noisy line segments and prone to group
shorter boundaries. Our method is more robust than RRC to
this kind of noisy line segments. MB+, MR, SO, wCtr are
more dependent on homogeneous colors or intensities. They
are good at extracting building roofs with unified intensities.
Theoretically, they are more robust to complex shapes. How-
ever, VHR images contains very detailed structures of building
roofs and these structures usually have different colors, which
confuse the intensity based methods. Detecting building roofs
with heterogeneous intensities is difficult for these intensity
based methods, see results in row 2 and 4. They are also prone
to take salient background as the building roofs, see row 5. It
can be seen that our method is robust to different shapes and
intensity variations compared to other methods.

Table I summarizes the average IoU and EaveAl of all the
methods over the dataset. Our method achieves 90.56% of
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(a) (b) (c) (d) (e)

Fig. 5. Illustration of failure cases: Red and green outlines are
ground truth and our results, respectively. (a) failure caused
by complex structures inside the roof outline. (b) failure due
to non-building noisy line segments. (c) failure due to missing
edges. (d)-(e) failure due to large surroundings area that
includes specific textures or structures; (d) is of size 281×277
and (e) is of size 589×611.

the average IoU and 6.56 pixels of EaveAl (more than 30%
improvement in EaveAl), which outperform other methods.
The overall IoU and EaveAl trends of each method are shown
in Fig. 4a and 4c. To further highlight the robustness of our
method, the curves of successfully extracted image numbers
with respect to different IoU and EaveAl thresholds are shown
in Fig. 4. It can be seen that our method outperforms all of the
others in terms of both IoU and EaveAl. Although our method
outperforms state-of-the-art grouping methods in most cases,
there are still extreme cases that result in failure of accurate
outline extraction, some of which are shown in Fig. 5.

IV. CONCLUSIONS

This letter addresses the problem of accurate extraction
of complex building outlines from VHR aerial and satellite
images. A new outline grouping cost is proposed in terms of
a ratio that is normalized relative to outline length and area.
Then, a novel and simple framework is introduced for graph
construction and outline searching. The results on our newly
built dataset demonstrate that our method is robust to buildings
with different intensities and shapes. Currently, our method can
only extract the most salient building outline from a given
image. Hence, the input image has to be roughly cropped
around the target building. This prerequisite somehow limits
the applications of our method. Future work will focus on
extending our method to multiple building outlines extraction
from large scale images by integrating oriented object detec-
tion methods.
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