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This supplementary material provides complementary
quantitative and qualitative analysis of the proposed
Boundary-Aware Salient Object Detection Network (BAS-
Net).

1. With/without CRF Post-Processing
Conditional Random Field (CRF) [5] is a frequently

used post-processing procedure in image segmentation.
Here, we show the comparison of our method and Pi-
CANetR (which is the best-performing existing method)
with/without CRF. Table 1 illustrates the quantitative com-
parison. The performance improvement achieved by adding
CRF post-processing to our method is very limited (see 1st
and 2nd rows in Table 1). The main reason is that the proba-
bility maps produced by our method usually have high con-
fidence and clear boundaries, which are already very close
to or even better than the CRF post-processed results. Al-
though PiCANetR is slightly improved by CRF, its result
is still not as good as ours in terms of maxFβ , relaxF bβ
and MAE. Fig. 1 (b) and (c) show the qualitative com-
parison of our method without/with CRF post-processing.
Their visual differences are negligible. Fig. 1 (d) and (e) il-
lustrate the difference between PiCANetR and PiCANetRC
(PiCANeR with CRF). While CRF gives higher confidence
of the saliency map, it introduces salt-and-pepper noises
around the boundaries. Additionally, CRF post-processing
is usually slow and approximately doubles the time costs.
Therefore, we do not suggest to use CRF post-processing
for our method.

2. Complete Qualitative Comparison
In this section, we provide a comprehensive qualitative

comparison of our method with other 15 methods (see Fig.
4) on challenging images with low contrast (1st and 2nd
columns), fine structures (3rd and 4th columns), large object
touching image boundaries (5th and 6th columns), complex
object boundaries (7th and 8th columns), cluttered fore-
ground and background (last two columns).

Fig. 5 shows more challenging cases, including large ob-
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Figure 1. Illustration of CRF post-processing on our method
and PiCANetR. (a) shows the input image, ground truth
(GT), ground truth boundary map and zoom-in view of the
boundary map. “Ours+” and “PiCANetRC” are with CRF
post-processing. In (b), (c), (d) and (e), from left to right
are predicted salient object, zoom-in view of salient object,
boundary map of predicted salient object and zoom-in view
of boundary map, respectively.



Table 1. Comparison of the results with/without CRF post-processing of our method and PiCANetR [10] on six datasets in
terms of the maximum F-measure maxFβ (larger is better), the relaxed boundary F-measure relaxF bβ (larger is better) and
the MAE (smaller is better). Red, Green, and Blue indicate the best, second best and third best performance. “Ours+” and
“PiCANetRC” are with CRF.

- SOD [12] ECSSD [16] DUT-OMRON [17] PASCAL-S [9] HKU-IS [6] DUTS-TE [13]
Method maxFβ relaxF bβ MAE maxFβ relaxF bβ MAE maxFβ relaxF bβ MAE maxFβ relaxF bβ MAE maxFβ relaxF bβ MAE maxFβ relaxF bβ MAE
Ours+ 0.852 0.592 0.113 0.944 0.830 0.034 0.807 0.695 0.055 0.852 0.663 0.074 0.931 0.812 0.029 0.861 0.759 0.046
Ours 0.851 0.603 0.114 0.942 0.826 0.037 0.805 0.694 0.056 0.854 0.660 0.076 0.928 0.807 0.032 0.860 0.758 0.047

PiCANetRC[10] 0.855 0.514 0.096 0.940 0.775 0.035 0.804 0.629 0.054 0.859 0.605 0.064 0.927 0.766 0.031 0.867 0.699 0.040
PiCANetR [10] 0.856 0.528 0.104 0.935 0.775 0.046 0.803 0.632 0.065 0.857 0.598 0.076 0.918 0.765 0.043 0.860 0.696 0.050

(a)

(b)

(c)

Figure 2. Defective cases. From left to right are input im-
ages, ground truth and our results.

ject with cluttered backgrounds (1st column), object with
fine structures (2nd column), hollow object (3rd column),
objects with thin structures (4th-10th columns) and multi-
ple objects (11th-13th columns).

These two figures demonstrate that our method is able
to handle various challenging cases and produce accurate
salient objects with high quality boundaries.

3. Defective and Failure Cases

The term “defective” refers to the cases where our re-
sults are inconsistent with the ground truth. Fig. 2 illus-
trates some of the defective results of our BASNet com-
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Figure 3. Failure cases. From left to right are input images,
ground truth and our results.

pared with the ground truth. However, as can be seen in
Fig. 2, these defective cases are not necessarily inferior re-
sults. It depends on the practical applications. For exam-
ple, only coarse regional segmentation is required in camera
autofocusing while more details/boundaries are preferred in
applications like image matting and editing. Furthermore,
the salient objects in certain images could be ambiguous.
Hence, avoiding these kinds of “defective” cases could yield
better performance measures but is often unnecessary in the
real-world applications.

Besides, we show several typical failure cases of our
method in Fig. 3. Fig. 3(a) shows that our method is not
able to correctly segment large objects with salient sub-
regions. Fig. 3(b) illustrates that our method fails to handle
large complex scene with too many objects. Fig. 3(c) shows
that our method fails in images with no obvious foreground
objects. It is worth noting that these failure cases are also
hard to most of the other state-of-the-art methods. There-
fore, there is still a large room for the improvement of our
BASNet.



Figure 4. Qualitative comparison of the proposed method with 15 other methods. Each sample occupies two columns. The
2nd column of each sample is the zoom-in view. From top to bottom are input image, ground truth, Ours, PiCANetR [10],
BMPM [18], R3Net [2], PAGRN [22], RADF [4], DGRL [15], RAS [1], C2S [8], LFR [19], DSS [3], NLDF [11], SRM
[14], Amulet [20], UCF [21], MDF [7], respectively.



Figure 5. Qualitative comparison of the proposed method with 15 other methods. From top to bottom are input image,
ground truth, Ours, PiCANetR [10], BMPM [18], R3Net [2], PAGRN [22], RADF [4], DGRL [15], RAS [1], C2S [8],
LFR [19], DSS [3], NLDF [11], SRM [14], Amulet [20], UCF [21], MDF [7], respectively.
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